skip to main content


Search for: All records

Creators/Authors contains: "Sekar, Vyas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 16, 2024
  2. Network operators need to run diverse measurement tasks on programmable switches to support management decisions (e.g., traffic engineering or anomaly detection). While prior work has shown the viability of running a single sketch instance, they largely ignore the problem of running an ensemble of sketch instances for a collection of measurement tasks. As such, existing efforts fall short of efficiently supporting a general ensemble of sketch instances. In this work, we present the design and implementation of Sketchovsky, a novel cross-sketch optimization and composition framework. We identify five new cross-sketch optimization building blocks to reduce critical switch hardware resources. We design efficient heuristics to select and apply these building blocks for arbitrary ensembles. To simplify developer effort, Sketchovsky automatically generates the composed code to be input to the hardware compiler. Our evaluation shows that Sketchovsky makes ensembles with up to 18 sketch instances become feasible and can reduce up to 45% of the critical hardware resources. 
    more » « less
  3. Third-party dependencies expose websites to shared risks and cascading failures. The dependencies impact African websites as well e.g., Afrihost outage in 2022 [15]. While the prevalence of third-party dependencies has been studied for globally popular websites, Africa is largely underrepresented in those studies. Hence, this work analyzes the prevalence of third-party infrastructure dependencies in Africa-centric websites from 4 African vantage points. We consider websites that fall into one of the four categories: Africa-visited (popular in Africa) Africa-hosted (sites hosted in Africa), Africa-dominant (sites targeted towards users in Africa), and Africa-operated (websites operated in Africa). Our key findings are: 1) 93% of the Africa-visited websites critically depend on a third-party DNS, CDN, or CA. In perspective, US-visited websites are up to 25% less critically dependent. 2) 97% of Africa-dominant, 96% of Africa-hosted, and 95% of Africa-operated websites are critically dependent on a third-party DNS, CDN, or CA provider. 3) The use of third-party services is concentrated where only 3 providers can affect 60% of the Africa-centric websites. Our findings have key implications for the present usage and recommendations for the future evolution of the Internet in Africa. 
    more » « less
  4. Today’s large-scale services (e.g., video streaming platforms, data centers, sensor grids) need diverse real-time summary statistics across multiple subpopulations of multidimensional datasets. However, state-of-the-art frameworks do not offer general and accurate analytics in real time at reasonable costs. The root cause is the combinatorial explosion of data subpopulations and the diversity of summary statistics we need to monitor simultaneously. We present Hydra, an efficient framework for multidimensional analytics that presents a novel combination of using a “sketch of sketches” to avoid the overhead of monitoring exponentially-many subpopulations and universal sketching to ensure accurate estimates for multiple statistics. We build Hydra as an Apache Spark plugin and address practical system challenges to minimize overheads at scale. Across multiple real-world and synthetic multidimensional datasets, we show that Hydra can achieve robust error bounds and is an order of magnitude more efficient in terms of operational cost and memory footprint than existing frameworks (e.g., Spark, Druid) while ensuring interactive estimation times. 
    more » « less
  5. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  6. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  7. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  8. Much of our understanding of congestion control algorithm (CCA) throughput and fairness is derived from models and measurements that (implicitly) assume congestion occurs in the last mile. That is, these studies evaluated CCAs in “small scale” edge settings at the scale of tens of flows and up to a few hundred Mbps bandwidths. However, recent measurements show that congestion can also occur at the core of the Internet on inter-provider links, where thousands of flows share high bandwidth links. Hence, a natural question is: Does our understanding of CCA throughput and fairness continue to hold at the scale found in the core of the Internet, with 1000s of flows and Gbps bandwidths? Our preliminary experimental study finds that some expectations derived in the edge setting do not hold at scale. For example, using loss rate as a parameter to the Mathis model to estimate TCP NewReno throughput works well in edge settings, but does not provide accurate throughput estimates when thousands of flows compete at high bandwidths. In addition, BBR – which achieves good fairness at the edge when competing solely with other BBR flows – can become very unfair to other BBR flows at the scale of the core of the Internet. In this paper, we discuss these results and others, as well as key implications for future CCA analysis and evaluation. 
    more » « less